Our Knowledge Networks

In the Netherlands, about 300 scientists are engaged in research into life and evolution every day. They dream of new discoveries, both big and small. The Origins Center connects these researchers in Knowledge Networks.

Emergence of homochirality in living systems

Prior to the emergence of life, chemistry was likely producing both left- and right-hand versions of hydrocarbons in equal proportions. These molecules are called chiral molecules. In contrast, life has emerged from only one of the two versions of these chiral molecules. This preference for one handedness has become a fingerprint of living systems, from molecules to plants and animals. It has fascinated scientists from Darwin's time into the 21st century.

Go to Network

Nathalie Katsonis

University of Groningen

Nathalie Katsonis

University of Groningen

Website

Networks:

Fields of interest:

Swimming cells follow helical trajectories - including bacteria, zooplankton, sperm cells, ciliates and protozoa. We use minimal models of swimming cells to research the rules that govern their motile behavior in water. One of our conclusions is that the operation of artificial molecular machines can steer this helical motion in specific directions.

chemistry

Bridging long temporal and spatial scales

Research into the origins and evolution of life requires a great deal of imagination from scientists. They have to make comparisons between situations that are billions of years apart. They also must relate molecular processes to entire ecosystems. This requires detailed computer models that can make these leaps in time and scale easy to handle.

Go to Network

Evan Spruijt

Radboud University Nijmegen

Evan Spruijt

Radboud University Nijmegen

Website

Bio:


          

Networks:

Fields of interest:

Compartmentalization is a cornerstone of all living systems. We aim to understand how life-like functions such as self-replication, growth and division, could have emerged in simple compartments formed by phase separation under prebiotic conditions. We have developed several minimal model systems that show active growth, dissipative adaptation and self-division. Our ultimate goal is to be able to create a self-proliferating protocell from a mixture of non-living building blocks.
systems chemistry, origins of life, self-assembly, protocells, synthetic cells

Finding extraterrestrial life

If we can say that life exists outside of the Earth, it changes our view of humanity's role in the Universe. Is the Earth really unique as the cradle of life? Technological developments will enable researchers to find the answer in the coming decades

Go to Network

Inga Kamp

Kapteyn Astronomical Institute, University of Groningen

Inga Kamp

Kapteyn Astronomical Institute, University of Groningen

Website

Networks:

Fields of interest:

I like to understand how planets form from the disks of gas and dust around young stars. My focus within the ORIGINS centre is on connecting the chemical composition of the disk to that of the building blocks of planets and eventually the planets themselves. I do this by observing the gas, ice and dust component  in planet forming disks and combining this with radiation thermo-chemical disk models to interpret observational data. From there, I extrapolate to the ongoing planet forming processes in the mid plane of these disks that are often "hidden to direct astronomical observations".

formation of planetary systems

Building and repairing life - from molecule to ecosystem

Living organisms are constantly interacting with their environment. This happens at the scale of (bio)molecules to cells and from animals and plants to complete ecosystems. Researchers want to know exactly how life functions. If that insight improves, we can repair broken life, treat (genetic) diseases and rebuild lost ecosystems.

Go to Network

Joyce Lebbink

Erasmus MC

Joyce Lebbink

Erasmus MC

Website

Networks:

Fields of interest:

We study the molecular mechanism of DNA mismatch repair by reconstitution of the reaction from individually purified proteins and DNA components in the test tube. In this way we can study order, timing and control of different reaction steps and correlate with predictions from stochastic modelling approaches. This integrated approach allows us to unravel how this important cellular pathway has evolved in different organisms.
biochemistry; DNA repair

Predicting evolution of life

Thanks to evolution, the great diversity of life came into being. If we could predict or control the course of evolution, we would be able to solve major social problems. Preventing bee extinction, for example; or tackling resistant bacteria; and we may even reverse environmental pollution.

Go to Network

Liedewij Laan

Member Steering Committee

TU Delft

Liedewij Laan

Member Steering Committee

TU Delft

Website

Networks:

Fields of interest:

As pioneers of the emerging field of evolutionary cell biophysics, we aim to understand how the building blocks of a cell constrain and facilitate evolution of cellular functions. The function we focus on is symmetry breaking in budding yeast. We do experimental evolution, quantitative cell biology and modeling in live cells in combination with minimal in vitro systems to understand the molecular mechanisms of adaptive mutations and to predict fitness, both with bottom-up (biophysics) and top-down (statistical) approaches.

cell biophysics, predicting evolution, minimal synthetic systems

Origin and co-evolution of earth-like planets and life

The Earth is currently the only place where life is known to exist. Wouldn't it be great if we found other planets on which life exists? Techniques are available to answer that question over the next decades.

Go to Network

Inga Kamp

Kapteyn Astronomical Institute, University of Groningen

Inga Kamp

Kapteyn Astronomical Institute, University of Groningen

Website

Networks:

Fields of interest:

I like to understand how planets form from the disks of gas and dust around young stars. My focus within the ORIGINS centre is on connecting the chemical composition of the disk to that of the building blocks of planets and eventually the planets themselves. I do this by observing the gas, ice and dust component  in planet forming disks and combining this with radiation thermo-chemical disk models to interpret observational data. From there, I extrapolate to the ongoing planet forming processes in the mid plane of these disks that are often "hidden to direct astronomical observations".

formation of planetary systems

Newsletter

Become a fan of the Origins Center and always stay up to date with the latest news about all our research fields!
Sign up

This website uses cookies

Cookies kunnen gebruikt worden voor het bijhouden van statistieken, het optimaliseren van de website, integratie van social media en voor marketingdoeleinden.

adjust cookie settings
accept all cookies

Lees meer over cookies in onze privacyverklaring.

accept these cookies